

# P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA SEM IV EXAMINATIONS MAY -2024

II B.SC. MATHS SUBJECT: LINEAR ALGEBRA

| And other mentions are as an an analysis of the same of the same and t |                  | 1110 000000 | and the same of the same of the same and the same of t |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| SESSION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30.05.2024<br>FN | REG         | MARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50                                    |
| WHEN WHEN PERSONNELS AND ADDRESS OF THE PARTY OF THE PART |                  | INU         | The second secon | HE SECTION SHAPE SECTION AND ADDRESS. |

Time: 2Hrs

Max. Marks: 50

### SECTION-A

Answer any three questions selecting atleast one question from each part

$$3 \times 10 = 30 M \cdot \cdot$$

- 1. Prove that the necessary and sufficient condition for a non-empty subset W of a vector space V(F) to be a subspace of V is that  $a, b \in F$ ,  $\alpha, \beta \in W \Rightarrow a\alpha + b\beta \in W$ .
- 2. Let W be a subspace of a finite dimensional vector space V(F) then prove that  $\dim(V/W) = \dim V \dim W$ .
- 3. Let  $T: R^3 \to R^3$  be defined by T(x, y, z) = (x y + 2z, 2x + y z, -x 2y). Then verify Rank-nullity theorem.

#### Part - B

4. Find the eigen roots and the corresponding eigen vectors of the square matrix

66

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

- 5. State and prove Cayley-Hamilton theorem.
- 6. Apply the Gram-Schmidt process to the vectors  $\beta_1 = (2, 1, 3)$ ,  $\beta_2 = (1, 2, 3)$ ,  $\beta_3 = (1, 1, 1)$  to obtain an orthonormal basis for  $V_3(R)$  with the standard product

#### **SECTION-B**

## Answer any four questions.

 $4 \times 5 = 20M$ 

- 1. Show that the vector  $\alpha = (2, -5, 3)$  in  $\mathbb{R}^3$  cannot be expressed as a linear combination of the vectors  $e_1 = (1, -3, 2)$ ,  $e_2 = (2, -4, -1)$  and  $e_3 = (1, -5, 7)$
- 2. Prove that the linear span L(S) of any subset S of a vector space V(F) is a subspace of V(F)
- 3. State and Prove invariance theorem.

- 4. Show that the vectors (1,1,2), (1,2,5), (5,3,4) of  $R^3(R)$  do not form a basis of  $R^3(R)$ .
- 5. Let U(F) and V(F) be two vector spaces such that  $T: U(F) \rightarrow V(F)$  be a linear transformation. Prove that the range set R(T) is a subspace of V(F).
- 6. Show that the system of equations x 4y + 7z = 14, 3x + 8y 2z = 13, 7x 8y + 26z = 5 are inconsistent.
- 7. State and prove Parallelogram law in an inner product space V(F).